IBM Quantum @Q2B 2023

Dr. Jeannette (Jamie) Garcia

Technical Program Director Algorithms and Partnerships, IBM Quantum

IBM Quantum Summit 2023

The Era of Quantum Utility

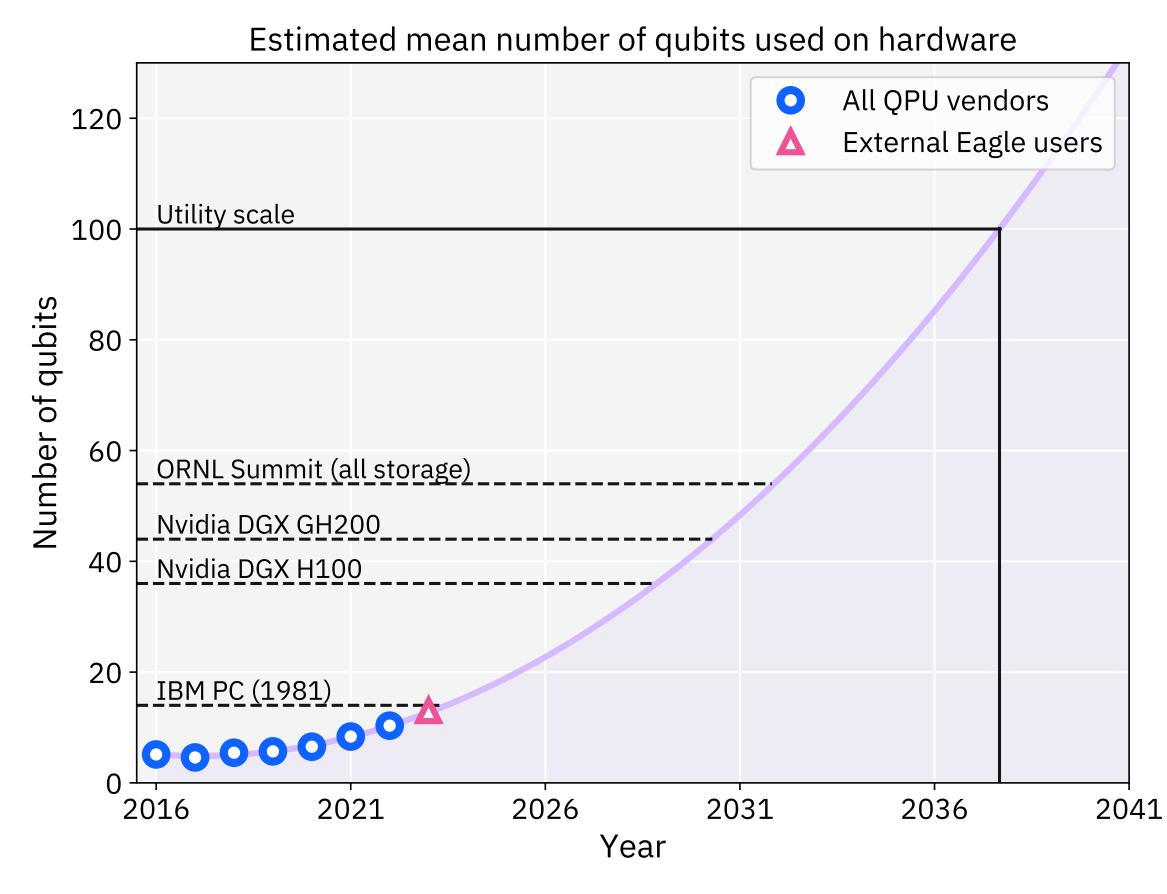
New IBM Quantum Processors: Condor, Heron

IBM Quantum System Two

Software: Qiskit 1.0 & Bringing AI to Quantum

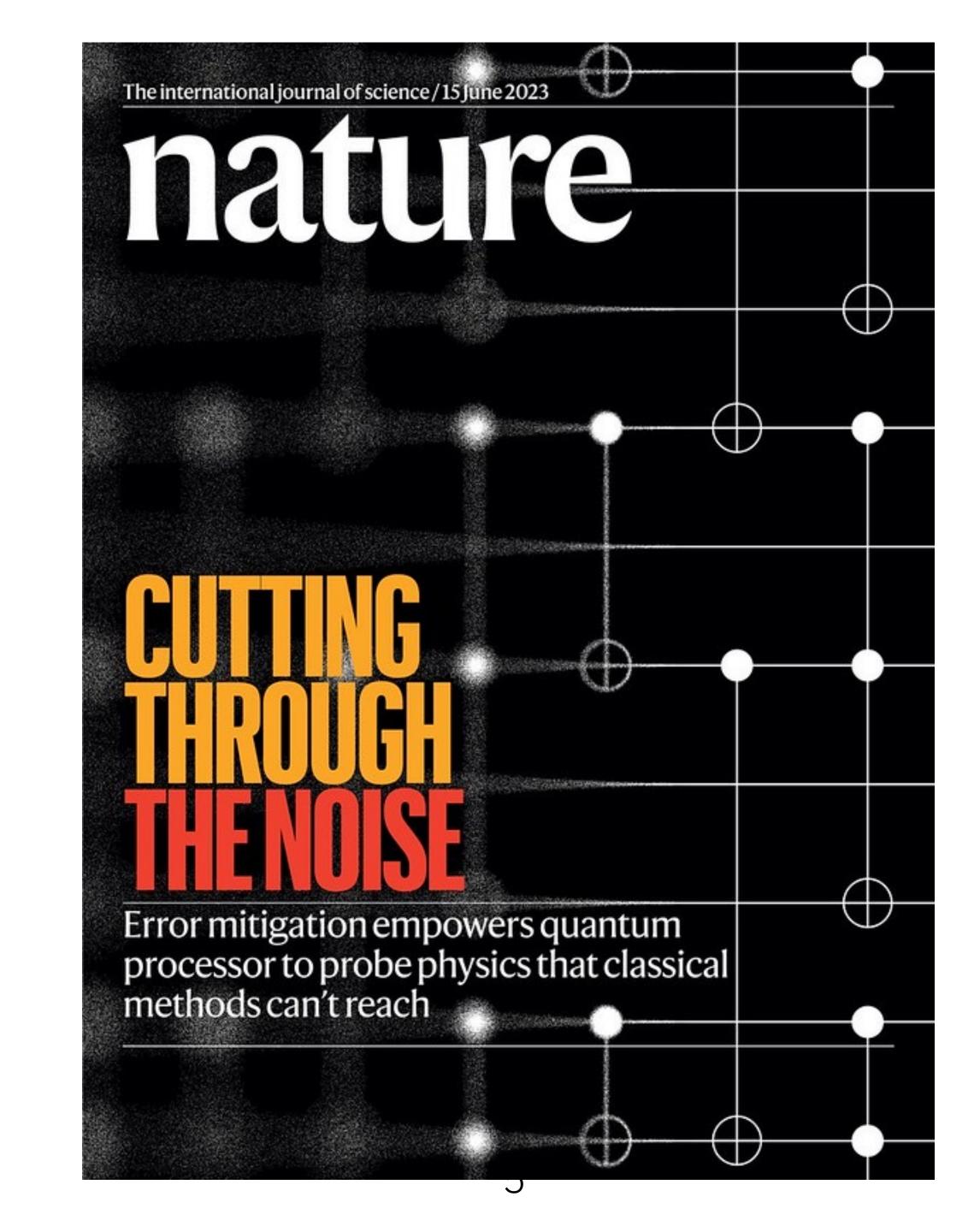
IBM Quantum Development Roadmap Expansion

https://www.youtube.com/watch?v=De2IIWji8Ck

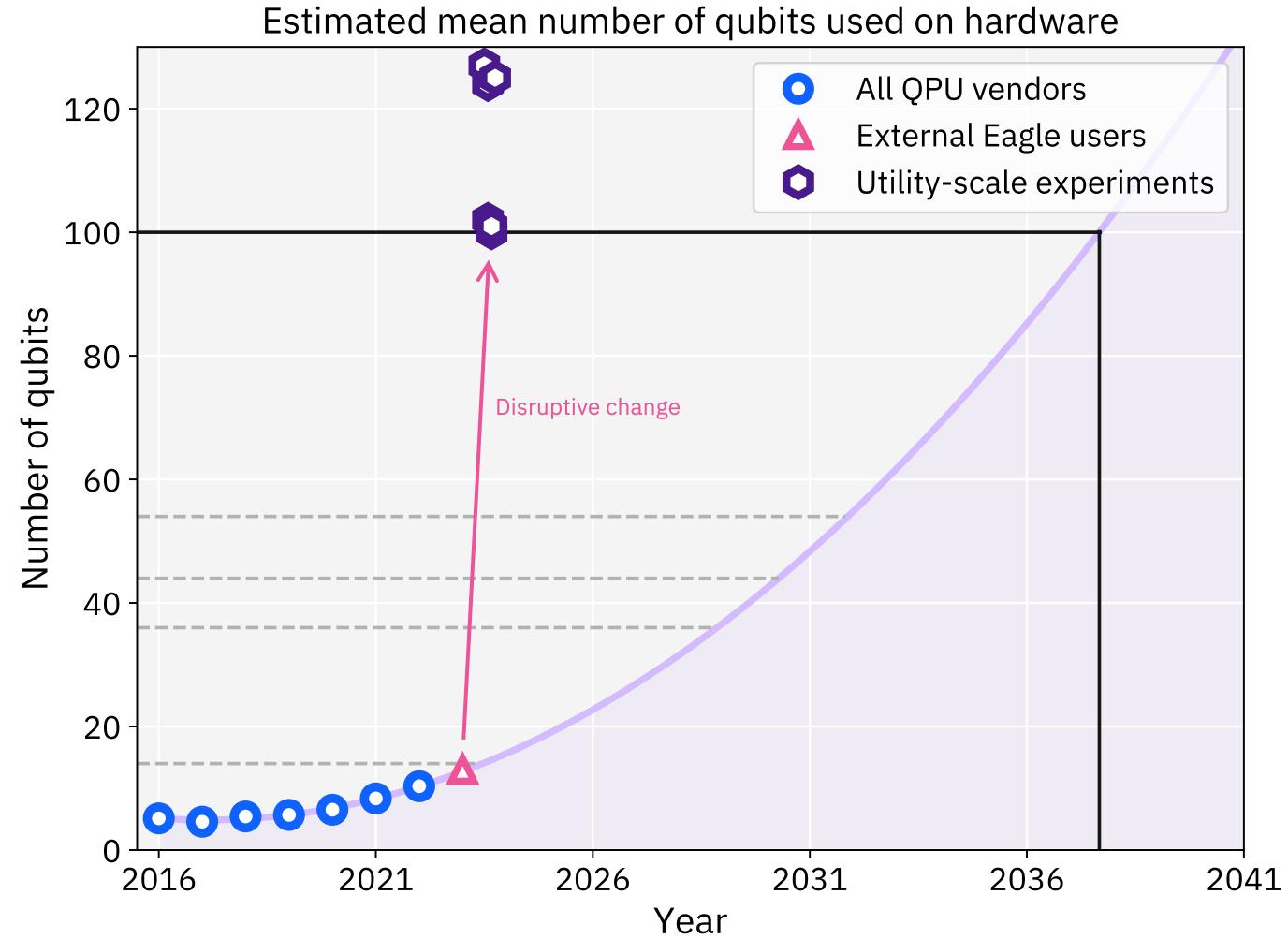

IBM Quantum / © 2023 IBM Corporation

The era of quantum utility

Quantum state of play


Data for all vendors taken from: arXiv:2307.16130

We need a *disruptive change* to unlock the potential of quantum computation.



A noisy quantum computer produces accurate expectation values on 127 qubits, outside of brute force classical computation.

https://www.nature.com/articles/s41586-023-06096-3

IBM Quantum systems and Qiskit are bringing a disruptive change.

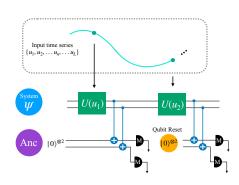
Data for all vendors taken from: arXiv:2307.16130

Multiple utility-scale experiments within last 6 months (more to come)

Evidence for the utility of quantum computing before fault tolerance

127 qubits / 2880 CX gates

Nature, 618, 500 (2023)

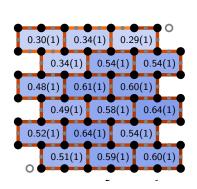


..... **BERKELEY LAB**

Quantum reservoir computing with repeated measurements on superconducting devices

120 qubits / 49470 gates + meas.

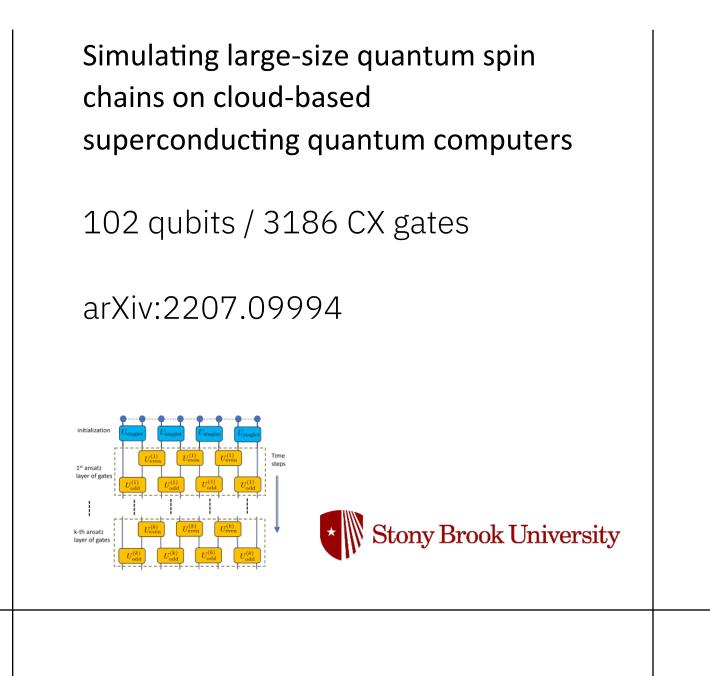
arXiv:2310.06706

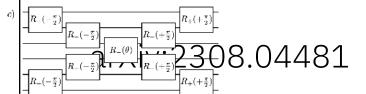


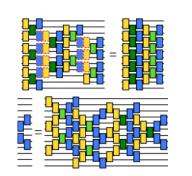
Realizing the Nishimori transition across the error threshold for constant-depth quantum circuits

125 qubits / 429 gates + meas.

arXiv:2309.02863

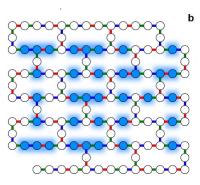



IBM Quantum / © 2023 IBM Corporation


https://www.youtube.com/watch?v=Hd-IGvuARfE

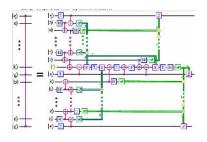
Scalable Circuits for Preparing Ground States on Digital Quantum Computers: The Schwinger Model Vacuum on 100 Qubits

 $= \frac{S H + R_{x'}(\pm \theta) + H S^{\dagger}}{|z| ||z|} 0 \text{ qubits } / 788 \text{ CX gates}$



Uncovering Local Integrability in Quantum Many-Body Dynamics

124 qubits / 2641 CX gates


arXiv:2307.07552

Efficient Long-Range Entanglement using Dynamic Circuits

101 qubits / 504 gates + meas.

arXiv:2308.13065

7

Condor

Pushing the limits of scale & yield

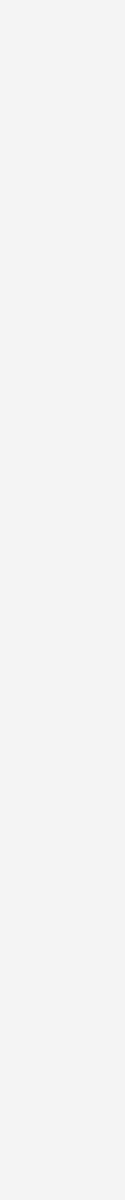
1,121

Superconducting qubits

50%

Increase in qubit density

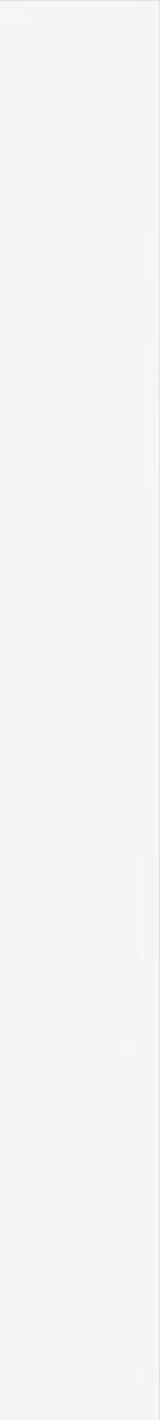
1 mile +


Of flex cabling

IBM Quantum / © 2023 IBM Corporation

Condor unblocked the road to scaling.

We now need to focus on gate depth and quality.



9

IBM Quantum Heron: A Four-Year Journey

133-qubit count tunable coupler architecture

IBM Quantum Platform: Where users come to do work

Qiskit + Systems = Work

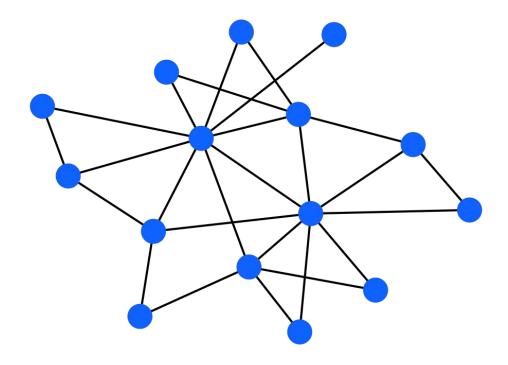
IBM Quantum / © 2023 IBM Corporation

Qiskit 1.0

https://www.youtube.com/watch?v=3QGmYr6cyB4

IBM Quantum / © 2023 IBM Corporation

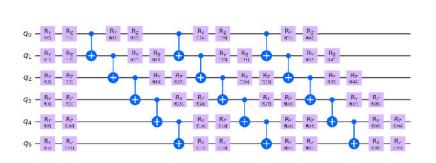
Now with increased performance, stability, and reliability.

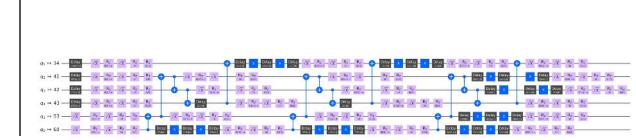


Qiskit Patterns

The anatomy of a quantum algorithm

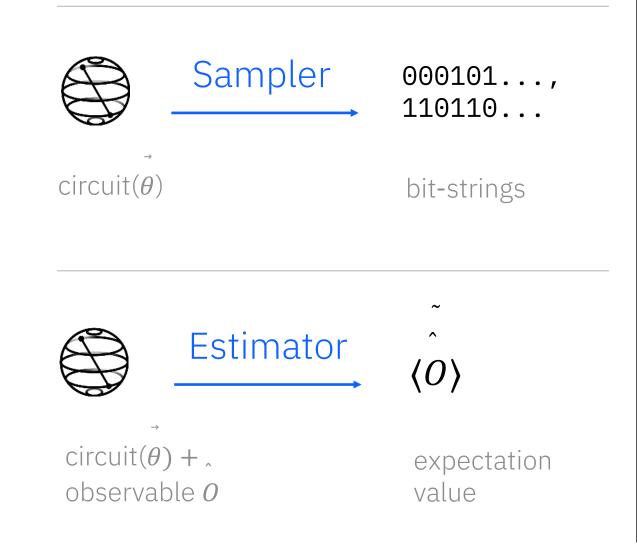
Step 1

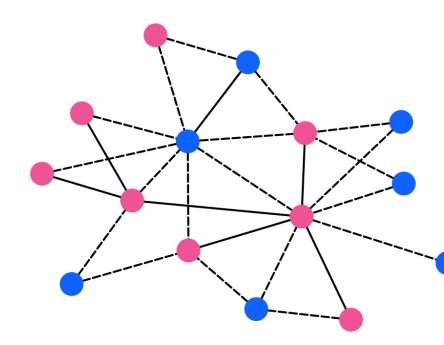

Map quantum circuits and operators.



Step 2

Optimize problem for quantum execution.


PassManager(UnitarySynthesis(), BasisTranslator(), EnlargeWithAncilla(), AlSwap(), Collect1qRuns(), Optimize1qGates(), Collect2qBlocks(), ConsolidateBlocks())


Step 3

Execute using Qiskit Runtime Primitives.

Step 4

Post-process, return result in classical format.

The full promise of quantum computing at scale delivered via error correction

IBM Quantum / © 2023 IBM Corporation

A 100,000-qubit quantum centric super computer lets us move toward practical faulttolerance.

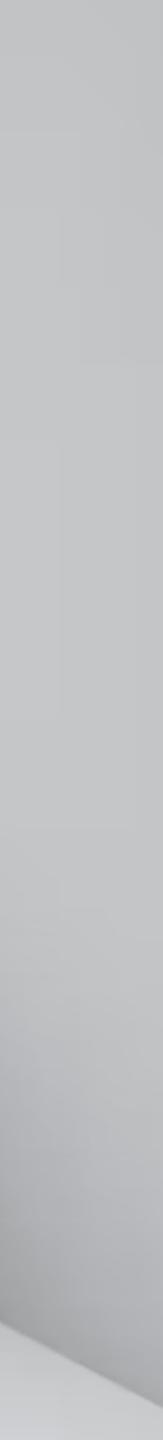
Low-overhead fault tolerant quantum computing using long-range connectivity

High-threshold and low-overhead fault-tolerant quantum memory

Sergey Bravyi¹, Andrew W. Cross¹, Jay M. Gambetta¹, Dmitri Maslov¹, Patrick Rall², and Theodore J. Yoder¹

¹IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 (USA) ²IBM Quantum, MIT-IBM Watson AI Lab, Cambridge, MA 02142 (USA)

August 16, 2023


Abstract

Quantum error correction becomes a practical possibility only if the physical error rate is below a threshold value that depends on a particular quantum code, syndrome measurement circuit, and a decoding algorithm. Here we present an end-to-end quantum error correction protocol that implements fault-tolerant memory based on a family of LDPC codes with a high encoding rate that achieves an error threshold of 0.8% for the standard circuitbased noise model. This is on par with the surface code which has remained an uncontested leader in terms of its high error threshold for nearly 20 years. The full syndrome measurement cycle for a length-n code in our family requires n ancillary qubits and a depth-7 circuit composed of nearest-neighbor CNOT gates. The required qubit connectivity is a degree-6 graph that consists of two edge-disjoint planar subgraphs. As a concrete example, we show that 12 logical qubits can be preserved for ten million syndrome cycles using 288 physical qubits in total, assuming the physical error rate of 0.1%. We argue that achieving the same level of error suppression on 12 logical qubits with the surface code would require more than 4000 physical qubits. Our findings bring demonstrations of a low-overhead fault-tolerant quantum memory within the reach of near-term quantum processors.

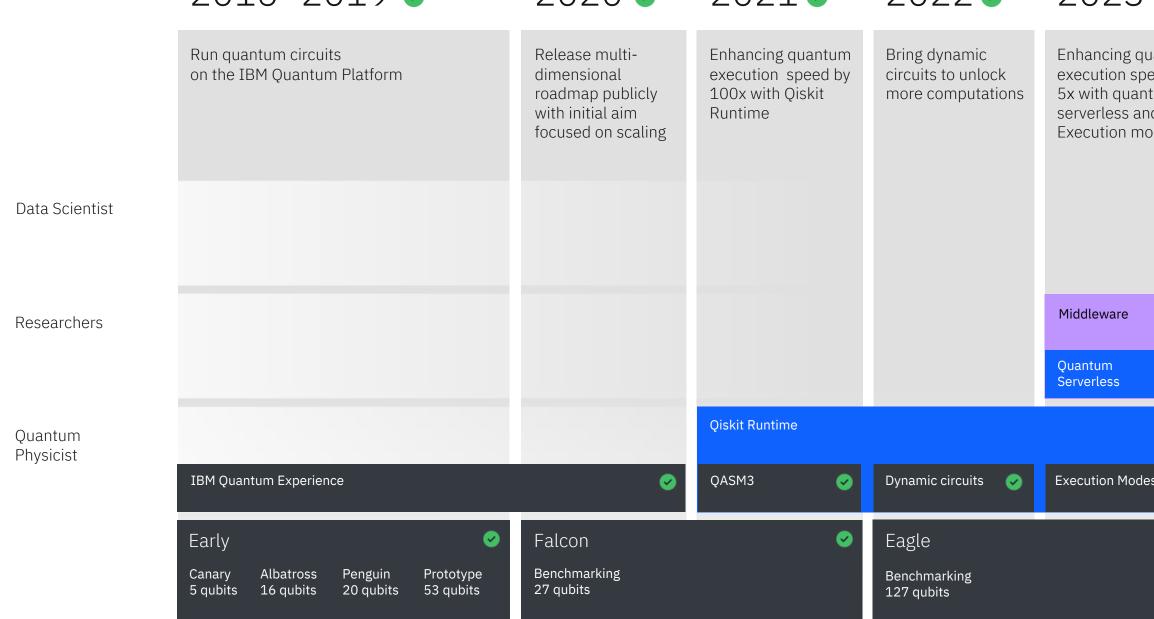
1 Introduction

Quantum computing attracted attention due to its ability to offer asymptotically faster solutions to a set of computational problems compared to the best known classical algorithms [1]. It is believed that a scalable functioning quantum computer may help solve computational problems in such areas as scientific discovery, materials research, chemistry, and drug design, to name a few [2, 3, 4, 5].

The main obstacle to building a quantum computer is the fragility of quantum information, owing to various sources of noise affecting it. Since isolating a quantum computer from external effects and controlling it to induce a desired computation are in conflict with each other, noise appears to be inevitable. The sources of noise include imperfections in qubits, materials used, controlling apparatus, State Preparation and Measurement (SPAM) errors, and a variety of external factors ranging from local man-made, such as stray electromagnetic fields, to those inherent to the Universe, such as cosmic rays. See Ref. [6] for a summary. While some sources of noise can be eliminated with better control [7], materials [8], and shielding [9, 10, 11], a number of other sources appear to be difficult if at all possible to remove. The latter kind can include spontaneous and stimulated emission in trapped ions [12, 13], and the interaction with the bath (Purcell Effect) [14] in superconducting circuits—covering both leading quantum technologies. Thus, error correction becomes a key requirement for building a functioning scalable quantum computer.

The road is clear to extending quantum utility

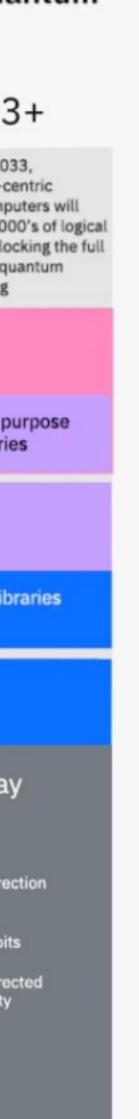
IBM Quantum / © 2023 IBM Corporation


https://www.youtube.com/watch?v=L5PwmFnHCBI

	2019 🧧	2020 🥥	2021 🥑	2022 🥏	2023 🥥	2024	2025	2026+	
	Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applications with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and spe quantum workflows with integration of error correct Qiskit Runtime	
Data Scientist					Prototype quantum <		Quantum software applicati	ons	
							Machine learning Natural science Optimizatio		
Researchers		Quantum algorithm & appli	cation modules	~	Middleware for Quantum				
		Machine learning Natural	science Optimization	v	Quantum Serverless 🛛 📀	Intelligent orchestration	Circuit Knitting Toolbox	Circuit libraries	
Quantum Physicist	Circuits	 Image: Control of the second se	Qiskit Runtime						
			QSAM3 🥏	Dynamic circuits 🛛 🥏	Execution Modes 🛛 🥪	Error suppression and mitig	ation	Error correction	
	Falcon 27 qubits	Hummingbird 65 qubits	QSAM3	Dynamic circuits Osprey 433 qubits	Execution Modes 🔗	Error suppression and mitig Flamingo 1,386+ qubits	ation Kookaburra 4,158+ qubits	Error correction Scaling to 10K-100K qubits with classical and quantum communication	
 Executed by IBM On target 		<u> </u>	Eagle 🕝	Osprey 🥝	Condor 🥝	Flamingo	Kookaburra	Scaling to 10K-100K qubits with classical and quantum	

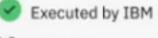
IBM Quantum

	2016-2019 🥥	2020 🥥	2021 🥥	2022 🥏	2023 🥏	2024	2025	2026	2027	2028	2029	2033-
	Run quantum circuits on the IBM Quantum Platform	Release multi- dimensional roadmap publicly with initial aim focused on scaling	Enhancing quantum execution speed by 100x with Qiskit Runtime	Bring dynamic circuits to unlock more computations	Enhancing quantum execution speed by 5x with quantum serverless and Execution modes	Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modularity	Improving quantum circuit quality to allow 7.5K gates	Improving quantum circuit quality to allow 10K gates	Improving quantum circuit quality to allow 15K gates	Improving quantum circuit quality to allow 100M gates	Beyond 2033 centric supero will include 10 logical qubits the full power quantum com
Data Scientist						Platform						
						Code assistant 👌	Functions	Mapping Collection	Specific Libraries			General purpose QC libraries
Researchers					Middleware							
					Quantum 🖌 Serverless	Transpiler Service 🥹	Resource Management	Circuit Knitting x P	Intelligent Orchestration			Circuit libraries
Quantum Physicist			Qiskit Runtime									
	IBM Quantum Experience	✓	QASM3	Dynamic circuits 📀	Execution Modes	Heron (5K) う Error Mitigation	Flamingo (5K) Error Mitigation	Flamingo (7.5K) Error Mitigation	Flamingo (10K) Error Mitigation	Flamingo (15K) Error Mitigation	Starling (100M) Error correction	Blue Jay (1E Error correction
	Early Canary Albatross Penguin Prototype 5 qubits 16 qubits 20 qubits 53 qubits	Falcon Benchmarking 27 qubits	v	Eagle Benchmarking 127 qubits	v	5k gates 133 qubits Classical modular 133x3 = 399 qubits	5k gates 156 qubits Quantum modular 156x7 = 1092 qubits	7.5k gates 156 qubits Quantum modular 156x7 = 1092 qubits	10k gates 156 qubits Quantum modular 156x7 = 1092 qubits	15k gates 156 qubits Quantum modular 156x7 = 1092 qubits	100M gates 200 qubits Error corrected modularity	1B gates 2000 qubits Error corrected modularity
Innovation	n Roadmap											
Software Innovation	IBM Qiskit Quantum	Application Modules	Qiskit 🛛 🕑 Runtime	Serverless <	AI enhanced <	Resource 🕉 management	Scalable circuit knitting	Error correction decoder				
	Experience API with compilation to multiple targets	Modules for domain specific application and algorithm workflows	Performance and abstract through Primitives	concepts of quantum centric- supercomputing	Prototype demonstrations of AI enhanced circuit transpilation	System partitioning to enable parallel execution	Circuit partitioning with classical reconstruction at HPC scale	Demonstration of a quantum system with real-time error correction decoder				
Hardware Innovation	Early Sense Falcon Sense Canary Penguin Demonstrate scaling	Hummingbird 📀	Eagle 🛛 😔 Demonstrate scaling	Osprey 📀 Enabling scaling with	Condor 🛛 😒 Single system scaling	Flamingo 🕹	Kookaburra Demonstrate scaling	Demonstrate path to	Cockatoo Demonstrate path to	Starling Demonstrate path to		
	5 qubits20 qubitswith I/O routing with Bump bondsAlbatrossPrototype 16 qubits53 qubits	with multiplexing readout	with MLW and TSV	high density signal delivery	and fridge capacity	with modular connectors	with nonlocal c-coupler	improved quality with logical memory	improved quality with logical communication	improved quality with logical gates		
Secuted by IBN					Heron 🔗 Architecture based on tunable-couplers	Crossbill 🕹 m- coupler						
On target												
IBM Quantum ,	/ © 2023 IBM Corporation											

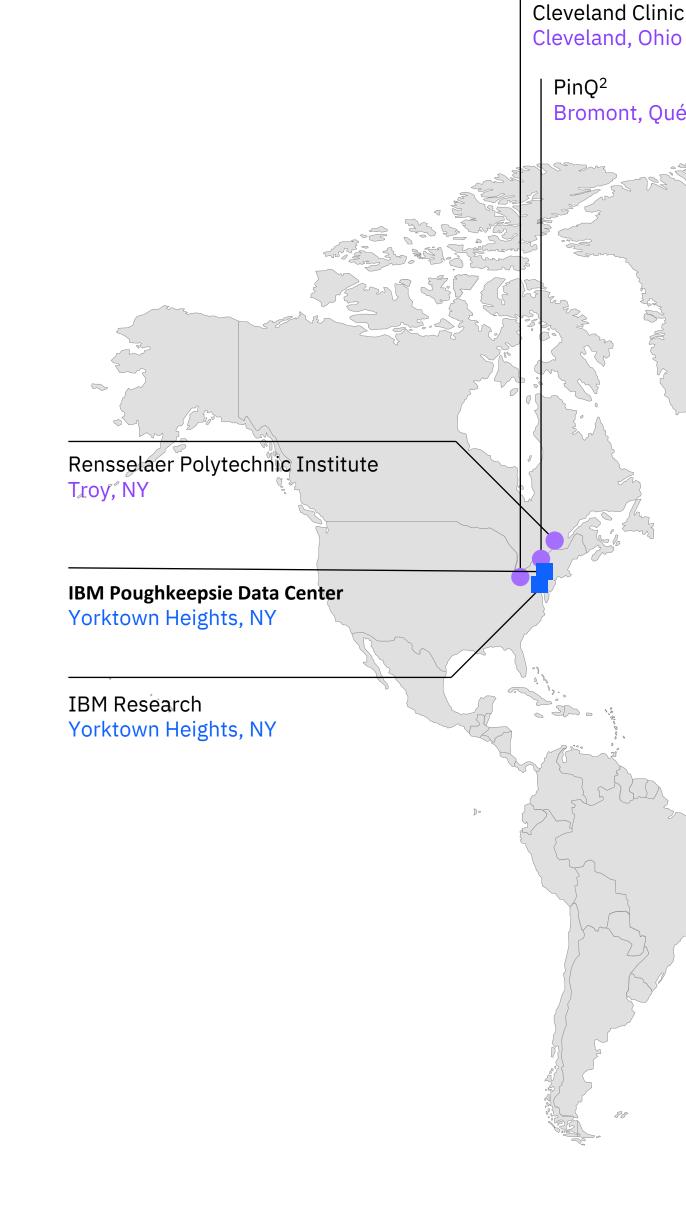

IBM **Quantum** 3+

033, quantumpercomputers de 1000's of bits unlocking wer of computing

(1B)


	2016-2019 🥑	2020 🥑	2021 🥑	2022 🥑	2023 🥏	2024	2025	2026+	2027	2028	2029	2033+
	Run quantum circuits on the IBM Quantum Platform	Release multi- dimensional roadmap publicly with initial aim focused on scaling	Enhancing quantum execution speed by 100x with Qiskit Runtime	Bring dynamic circuits to unlock more computations	Enhancing quantum execution speed by 5x with quantum serverless and Execution modes	Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum circuit quality to allow 7.5K gates	Improving quantum circuits quality to allow 7.5K gates	Improving quantum circuits quality to allow 10K gates	Improving quantum circuits quality to allow 15K gates	Improving quantum circuits quality to allow 100M gates	Beyond 2033, quantum-cent supercompute include 1000's qubits unlockin power of quan computing
Data Scientis	st					Platform						
						Code assist 🥹	Functions	Mapping Collections	Specific Libraries			General purp QC libraries
Researc	chers				Middleware							
					Quantum 📀 Serverless	Transpiler 🥹 Service	Resource Management	Circuit Knitting x P	Intelligent Orchest	ration		Circuit librar
Quantu Physicis			Qiskit Runtime									
		۲	Qiskit Runtime QASM3	Dynamic 📀 circuits	Execution 📀 Modes	い Heron (5K)	Flamingo (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)	Starling (100M)	Bluejay (1B)
	st	Falcon				ORENTIAL HERON (5K) Error Mitigation				and the second		
	IBM Quantum Experience Early Canary			circuits		(5K)	(5K)	(7.5K)	(10K)	(15K)	(100M)	(1B)
	IBM Quantum Experience Early Canary 5 qubits Albatross	Sealcon		circuits Eagle		(5K) Error Mitigation 5k gates 133 qubits Classical modular	(5K) Error Mitigation 5k gates 156 qubits Quantum modular	(7.5K) Error Mitigation 7.5k gates 156 qubits Quantum modular	(10K) Error Mitigation 10k gates 156 qubits Quantum modular	(15K) Error Mitigation 15k gates 156 qubits Quantum modular	(100M) Error correction 100M gates	(1B) Error correctio
	IBM Quantum Experience Early Canary 5 qubits Albatross 16 qubits Penguin	Senchmarking		circuits Eagle Benchmarking		(5K) Error Mitigation 5k gates 133 qubits	(5K) Error Mitigation 5k gates 156 qubits	(7.5K) Error Mitigation 7.5k gates 156 qubits	(10K) Error Mitigation 10k gates 156 qubits	(15K) Error Mitigation 15k gates 156 qubits	(100M) Error correction 100M gates 200 qubits Error corrected	(1B) Error correctio 1B gates 2000 qubits Error corrected
	IBM Quantum Experience Early Canary 5 qubits Albatross 16 qubits	Senchmarking		circuits Eagle Benchmarking		(5K) Error Mitigation 5k gates 133 qubits Classical modular Up to 133x3 =	(5K) Error Mitigation 5k gates 156 qubits Quantum modular Up to 156x7 =	(7.5K) Error Mitigation 7.5k gates 156 qubits Quantum modular Up to 156x7 =	(10K) Error Mitigation 10k gates 156 qubits Quantum modular Up to 156x7 =	(15K) Error Mitigation 15k gates 156 qubits Quantum modular Up to 156x7 =	(100M) Error correction 100M gates 200 qubits Error corrected	(1B) Error correctio 1B gates 2000 qubits Error corrected
	IBM Quantum Experience Early Canary 5 qubits Albatross 16 qubits Penguin 20 qubits Prototype 53 qubits	Senchmarking		circuits Eagle Benchmarking		(5K) Error Mitigation 5k gates 133 qubits Classical modular Up to 133x3 =	(5K) Error Mitigation 5k gates 156 qubits Quantum modular Up to 156x7 =	(7.5K) Error Mitigation 7.5k gates 156 qubits Quantum modular Up to 156x7 =	(10K) Error Mitigation 10k gates 156 qubits Quantum modular Up to 156x7 =	(15K) Error Mitigation 15k gates 156 qubits Quantum modular Up to 156x7 =	(100M) Error correction 100M gates 200 qubits Error corrected	(1B) Error correctio 1B gates 2000 qubits Error corrected

IBM Quantum


Innovation Roadmap

	2016-2019 오		2020 🔍	2021 🔍	2022 🔍	2023 🔍	2024	2025	2026	2027	2028	2029	203
Software Innovation	IBM Quantum Experience	Qiskit <table-cell></table-cell>	Application modules Modules for domain specific application and algorithm workflows	Qiskit Runtime Performance and abstract through Primitives	Serverless Demonstrate concepts of quantum centric- supercomputing	AI enhanced quantum Prototype demonstrations of AI enhanced circuit transpilation	Resource management System partitioning to enable parallel execution	Scalable circuit knitting Circuit partitioning with classical reconstruction at HPC scale	Error correction decoder Demonstration of a quantum system with real-time error correction decoder				
Hardware Innovation	Early 🥝	Falcon 🥝		Eagle 🥝	Osprey 🤗	Condor 🥝	Flamingo 🥹	Kookaburra		Cockatoo	Starling		
innovation	Canary 5 qubits Albatross	Demonstrate scaling with I/O routing with Bump bonds	Demonstrate scaling with multiplexing readout	Demonstrate scaling with MLW and TSV	Enabling scaling with high density signal delivery	Single system scaling and fridge capacity	Demonstrate scaling with modular connectors	Demonstrate scaling with nonlocal c-coupler	Demonstrate path to improved quality with logical memory	Demonstrate path to improved quality with logical communication	Demonstrate path to improved quality with logical gates		
	16 qubits Penguin 20 qubits Prototype 53 qubits												
						Heron Architecture based on tunable-couplers	Crossbill 🕑						
 Executed by IBM On target 													
C. Surtanger													

Scaling collaboration through Quantum **Computation Centers**

Cleveland Clinic Cleveland, Ohio

PinQ² Bromont, Québec

Jon ?

0000

IBM Ehningen Data Center [2024] Ehningen, Germany

Fraunhofer Ehningen, Germany

Yonsei University Seoul, Korea

BasQ San Sebastian, Spain RIKEN Kobe, Japan

Technical Working Groups

Bringing together experts from classical + quantum + industry to identify the most pressing scientific challenges in the area today

Biological Sciences & Drug Discovery

Image processing, Biomarkers – Omics technologies, Radiotherapy planning, Clinical trial optimization and design, Disease mechanism...

Materials

Materials properties Dynamics of chemical systems Ground and excited states...

https://youtu.be/6p-0XYgli7Q?si=mFDXwO1bml8eStZz

Cleveland Clinic

High Energy Physics

Anomaly detection Lattice Gauge Theory Sensing...

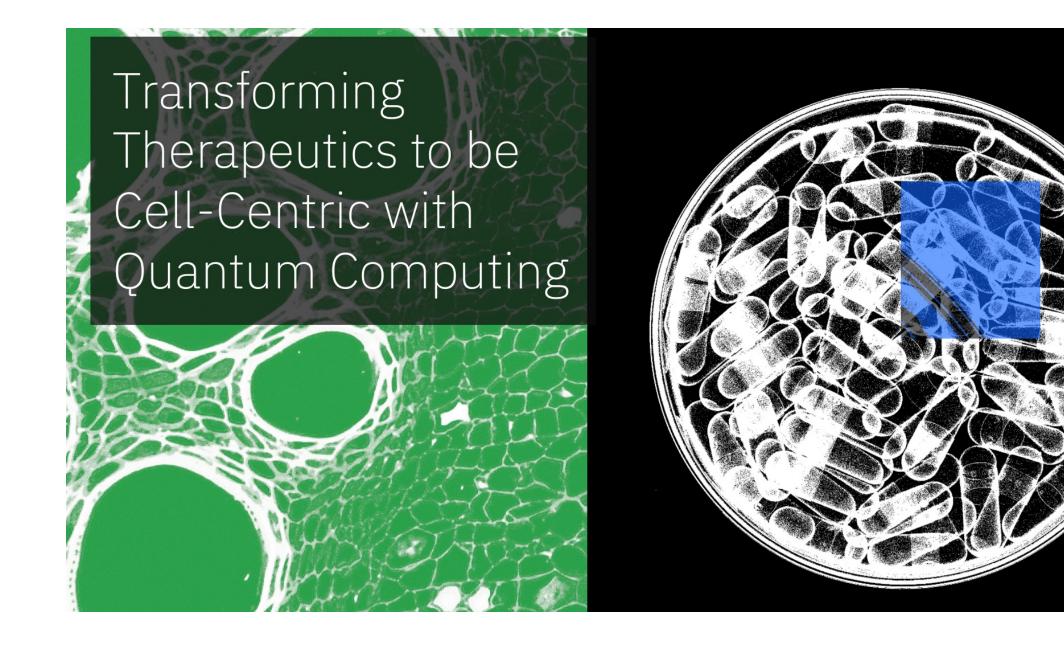
Optimization

Risk analysis Portfolio Optimization Transaction Settlement...

Healthcare & Life Sciences Tackling challenges for HCLS with quantum computing

Goals

Establish that now is the time to focus on HCLS for which quantum computing (through quantum) chemistry and QML algorithms) will be of paramount importance


Gain consensus on key scientific questions for quantum computing and HCLS.

Establish a roadmap/perspective on key challenges over next 3-6 years

Towards quantum-enabled cell-centric therapeutics

Saugata Basu¹, Jannis Born², Aritra Bose³, Sara Capponi^{4,5}, Dimitra Chalkia⁶, Timothy A Chan^{7,8}, Hakan Doga⁹, Maark Goldsmith¹⁰, Tanvi Gujarati⁹, Aldo Guzmán-Sáenz³, Dimitrios Iliopoulos⁶, Gavin Jones⁹, Stefan Knecht¹⁰, Dhiraj Madan¹¹, Sabrina Maniscalco¹⁰, Nicola Mariella¹², Joseph Morrone³, Pushpak Pati², Daniel Platt³, Maria Anna Rapsomaniki², Anupama Ray¹¹, Kahn Rhrissorrakrai³, Omar Shehab¹⁴, Ivano Tavernelli¹³, Meltem Tolunay⁹, Filippo Utro³, Stefan Woerner¹³, Sergiy Zhuk¹², Jeannette Garcia^{†9}, and Laxmi Parida^{†3}

https://arxiv.org/abs/2307.05734

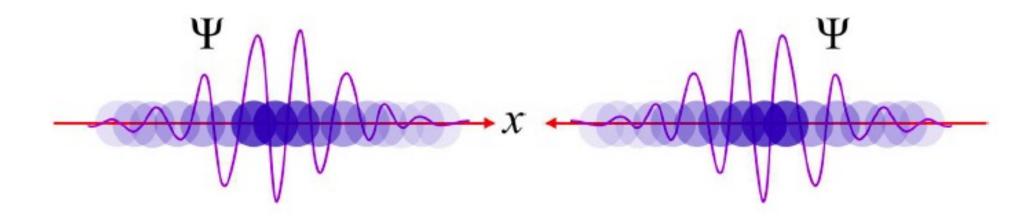
High Energy Physics Approaches to studying high energy physics problems with quantum

Goals

Deep dive look at the state of High Energy Physics challenges (from both experiment and theory)

Understand how quantum computing can boost the solution of open challenges in HEP

Demonstrate quantum advantage with near-term devises on relevant HEP problems


Catalyze new developments within HEP

IBM Quan

Quantum Computing for High-Energy Physics State of the Art and Challenges Summary of the QC4HEP Working Group

Alberto Di Meglio,^{1,*} Karl Jansen,^{2,3,†} Ivano Tavernelli,^{4,‡} Constantia Alexandrou,^{5,3} Srinivasan Arunachalam,⁶ Christian W. Bauer,⁷ Kerstin Borras,^{8,9} Stefano Carrazza,^{10,1} Arianna Crippa,^{2,11} Vincent Croft,¹² Roland de Putter,⁶ Andrea Delgado,¹³ Vedran Dunjko,¹² Daniel J. Egger,⁴ Elias Fernández-Combarro,¹⁴ Elina Fuchs,^{1,15,16} Lena Funcke,¹⁷ Daniel González-Cuadra,^{18,19} Michele Grossi,¹ Jad C. Halimeh,^{20,21} Zoë Holmes,²² Stefan Kühn,² Denis Lacroix,²³ Randy Lewis,²⁴ Donatella Lucchesi,^{25,26,1}
Miriam Lucio Martinez,^{27,28} Federico Meloni,⁸ Antonio Mezzacapo,⁶ Simone Montangero,^{25,26} Lento Nagano,²⁹
Voica Radescu,³⁰ Enrique Rico Ortega,^{31,32,33,34} Alessandro Roggero,^{35,36} Julian Schuhmacher,⁴ Joao Seixas,^{37,38,39} Pietro Silvi,^{25,26} Panagiotis Spentzouris,⁴⁰ Francesco Tacchino,⁴ Kristan Temme,⁶ Koji Terashi,²⁹ Jordi Tura,^{12,41} Cenk Tüysüz,^{2,11} Sofia Vallecorsa,¹ Uwe-Jens Wiese,⁴² Shinjae Yoo,⁴³ and Jinglei Zhang^{44,45}

https://arxiv.org/abs/2307.03236

ntum

Optimization Identifying the next steps for optimization

Goals

Engage with quantum & classical optimization communities

Identify and work on key questions to scale quantum optimization towards quantum advantage

Establish a set of benchmarks to track progress towards quantum advantage (in optimization and/or finance)

IBM Quar

ະ main - ະ 9 branches 🔊	o tags	o to file Code -
🌒 eggerdj Merge pull request	#26 from da66/ 828b4d7 2 weeks ag	o 🕤 121 commits
machine_learning	Update README.md	6 months ago
monte_carlo_simulation/	Added ChebPE benchmarks	7 months ago
optimization	Added version table	2 weeks ago
🗅 .gitignore	Added knapsack to solution_summary	last month
	Revert "Remove IBM from License"	6 months ago
🗅 README.md	Update README.md	6 months ago

E README.md

Quantum Algorithms Benchmarks (\$\color{red}{work \ in \ progress}\$) @

Welcome to this quantum algorithms benchmark repository! The goal of which is the collection of benchmarks that enable comparability between existing and future quantum algorithms and/or methods-directly provided by the quantum community.

This repository is made of three sub-modules each reflecting an area where quantum comuting has the potential to improve a computational task:

- Machine Learning,
- Optimization,
- Monte Carlo Simulation

Vision @

The repository tracks the progress of quantum computing algorithms and applications. It is made of libraries that include community-proposed benchmarking problems and corresponding solutions to these problems. Solutions to the benchmark problems may be run on any type of quantum hardware or simulator, e.g., superconducting qubits, annealers, or trapped ions. The progress of quantum computing towards larger problems is tracked by performance metrics defined in each sub-module. Everybody is welcome to propose benchmark problems that they believe are relevant as well as new solutions to existing benchmarks.

How to contribute *P*

The proposed solutions to a benchmark problem may either be executed on simulators or hardware. The platform on which the solution was obtained and the corresponding settings must be clearly indicated. Refer to the READMEs of the sub-modules for detailed instructions on how to contribute: <u>Machine Learning</u>, <u>Optimization</u>, and <u>Monte Carlo Simulation</u>.

About

No description, website, or topics provided.

- 🖽 Readme
- কা Apache-2.0 license
- S Code of conduct
- Activity
- ☆ 10 stars
- ⊙ 5 watching
- ਝ 2 forks
- Report repository

Releases

No releases published

Packages

No packages published

Languages

- Jupyter Notebook 99.1%
- Python 0.9%

https://github.com/qiskit-community/ quantum-algorithms-benchmarks

ntum

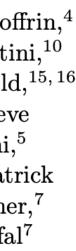
Optimization Identifying the next steps for optimization

Goals

Engage with quantum & classical optimization communities

Identify and work on key questions to scale quantum optimization towards quantum advantage

Establish a set of benchmarks to track progress towards quantum advantage (in optimization and/or finance)


Quantum Optimization: Potential, Challenges, and the Path Forward^{*}

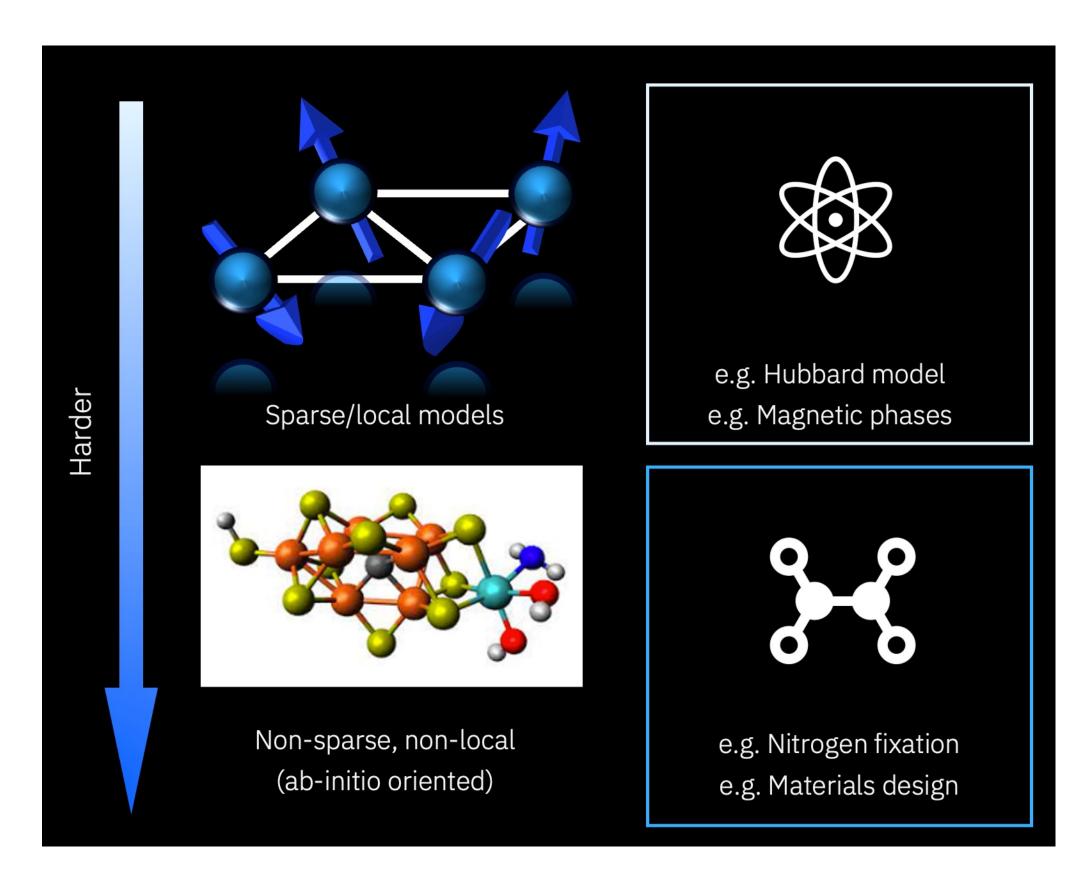
Amira Abbas,¹ Andris Ambainis,² Brandon Augustino,³ Andreas Bärtschi,⁴ Harry Buhrman,¹ Carleton Coffrin,⁴ Giorgio Cortiana,⁵ Vedran Dunjko,⁶ Daniel J. Egger,⁷ Bruce G. Elmegreen,⁸ Nicola Franco,⁹ Filippo Fratini,¹⁰ Bryce Fuller,¹¹ Julien Gacon,^{7,12} Constantin Gonciulea,¹³ Sander Gribling,¹⁴ Swati Gupta,³ Stuart Hadfield,^{15,16} Raoul Heese,¹⁷ Gerhard Kircher,¹⁰ Thomas Kleinert,¹⁸ Thorsten Koch,^{19,20} Georgios Korpas,^{21,22} Steve Lenk,²³ Jakub Marecek,²² Vanio Markov,¹³ Guglielmo Mazzola,²⁴ Stefano Mensa,²⁵ Naeimeh Mohseni,⁵ Giacomo Nannicini,²⁶ Corey O'Meara,⁵ Elena Peña Tapia,⁷ Sebastian Pokutta,^{19,20} Manuel Proissl,⁷ Patrick Rebentrost,²⁷ Emre Sahin,²⁵ Benjamin C. B. Symons,²⁵ Sabine Tornow,²⁸ Víctor Valls,²⁹ Stefan Woerner,⁷ Mira L. Wolf-Bauwens,⁷ Jon Yard,³⁰ Sheir Yarkoni,³¹ Dirk Zechiel,¹⁸ Sergiy Zhuk,²⁹ and Christa Zoufal⁷

https://arxiv.org/abs/2312.02279

Table IV. An overview of state-of-the-art experimental realizations of optimization algorithms on gate-based quantum computers with more than 15 variables. In cases where data was not made available in the corresponding publication or the accompanying data repository, we denote this in the respective field with N/A. AR denotes the approximation ratio, given based on the mean and the best sample value of the experiment, n.n. grid stands for nearest neighbor grid. Furthermore, JSP, FVQE and GQAOA abbreviate job shop scheduling problem, filtering variational quantum eigensolver, and greedy QAOA, respectively.

	AR							
Problem	$\operatorname{Algorithm}$	\mathbf{Qubits}	Density	mean	best	Depth	Year	Ref.
Sherrington-Kirkpatrick	QAOA	17	100%	0.61	N/A	$1 \le p \le 3$	2021	[360]
MAXCUT (R3R)	QAOA	20	16%	0.64	1	p = 2	2023	[377]
MAXCUT (R3R)	QAOA	20	16%	0.94	1	$p \le 10$	2023	[513]
MAXCUT (R3R)	QAOA	22	14%	0.67	$\mathrm{N/A}$	$1 \le p \le 3$	2021	[360]
MAXCUT (n.n. grid)	QAOA	23	13%	0.72	$\mathrm{N/A}$	$1 \le p \le 5$	2021	[360]
QUBO (JSP)	\mathbf{FVQE}	23	N/A	0.88	$\mathrm{N/A}$	$1 \le p \le 2$	2022	[514]
MAXCUT (heavy-hex.)	QAOA	27	8%	N/A	1	p = 2	2022	[376]
MAXCUT (R3R)	QAOA	30	10%	0.59	0.83	p = 2	2023	[377]
MAXCUT (R3R)	QAOA	32	10%	0.88	1	$p \le 10$	2023	[513]
MAXCUT (R3R)	QAOA	32	10%	N/A	1	p=2	2023	[205]
MAXCUT (R3R)	QAOA	40	8%	0.58	0.78	p = 2	2023	[377]
Sherrington-Kirkpatrick	GQAOA	72	100%	0.92	$\mathrm{N/A}$	p = 1	2023	[208]
QUBO (heavy-hex.)	QAOA	127	2%	0.67	0.85	$1 \le p \le 2$	2023	[411]
PUBO (heavy-hex.)	QAOA	127	2%	0.65	0.84	$1 \le p \le 2$	2023	[411]
PUBO (heavy-hex.)	QAOA	127	2%	0.73	0.89	$1 \le p \le 5$	2023	[515]
QUBO (heavy-hex.)	QAOA	414	0.6%	0.57	0.69	p = 1	2023	[515]
PUBO (heavy-hex.)	QAOA	414	0.6%	0.56	0.68	p = 1	2023	[515]

Materials Workflows for materials simulations


Goals

Identify key algorithms that make optimal use of quantum computing and HPC

Identify use cases in materials science for quantum/HPC algorithms

How best to model materials with quantum computers?

IBM Quan

Paper coming soon!!!

ntum

Bringing together experts from classical + quantum + industry to identify the most pressing scientific challenges in the area today

Coming in 2024: **Sustainability**

Biological Sciences & Drug Discovery

Image processing, Biomarkers – Omics technologies, Radiotherapy planning, Clinical trial optimization and design, Disease mechanism...

Materials

Materials properties Ground and excited states...

OAK RIDGE National Laboratory

Working group interest form: https://airtable.com/appL9KALjjbTDaueh/shrmeubXExazSH9vv

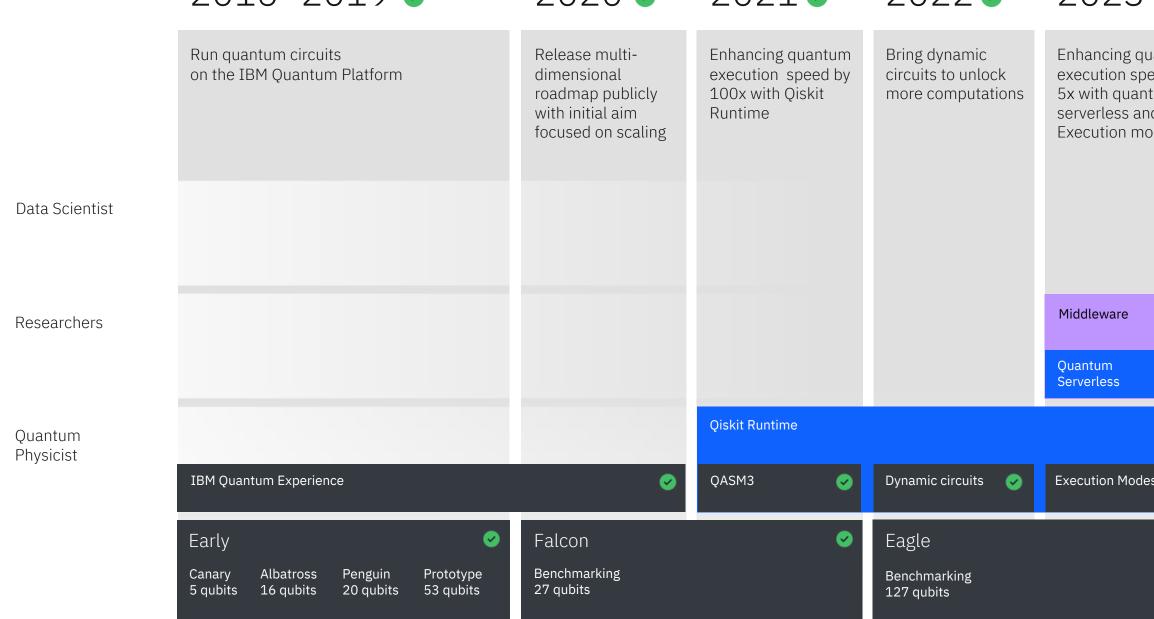
UNIVERSITY OF TORONTO

Cleveland Clinic

High Energy Physics

Anomaly detection Lattice Gauge Theory Sensing...

Dynamics of chemical systems



Optimization

Risk analysis Portfolio Optimization Transaction Settlement...

		2016-20		2020 🥥	2021 🖌	2022 🕏	2023 🥥	2024	2025	2026	2027	2028	2029	2033-
		Run quantum circuits on the IBM Quantum		Release multi- dimensional roadmap publicly with initial aim focused on scaling	Enhancing quantum execution speed by 100x with Qiskit Runtime	Bring dynamic circuits to unlock more computations	Enhancing quantum execution speed by 5x with quantum serverless and Execution modes	Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modularity	Improving quantum circuit quality to allow 7.5K gates	Improving quantum circuit quality to allow 10K gates	Improving quantum circuit quality to allow 15K gates	Improving quantum circuit quality to allow 100M gates	Beyond 2033 centric supero will include 10 logical qubits the full power quantum com
Data Scie	entist							Platform						
								Code assistant 👌	Functions	Mapping Collection	Specific Libraries			General purpose QC libraries
Research	iers						Middleware							
							Quantum 🖌 Serverless	Transpiler Service 👌	Resource Management	Circuit Knitting x P	Intelligent Orchestration			Circuit libraries
Quantum Physicist	l				Qiskit Runtime									
		IBM Quantum Experience	9	v	QASM3 📀	Dynamic circuits 🛛 📀	Execution Modes 📀	Heron (5K) う Error Mitigation	Flamingo (5K) Error Mitigation	Flamingo (7.5K) Error Mitigation	Flamingo (10K) Error Mitigation	Flamingo (15K) Error Mitigation	Starling (100M) Error correction	Blue Jay (1E Error correction
			Penguin Prototype 20 qubits 53 qubits	Falcon Benchmarking 27 qubits	⊘	Eagle Benchmarking 127 qubits	⊘	5k gates 133 qubits Classical modular 133x3 = 399 qubits	5k gates 156 qubits Quantum modular 156x7 = 1092 qubits	7.5k gates 156 qubits Quantum modular 156x7 = 1092 qubits	10k gates 156 qubits Quantum modular 156x7 = 1092 qubits	15k gates 156 qubits Quantum modular 156x7 = 1092 qubits	100M gates 200 qubits Error corrected modularity	1B gates 2000 qubits Error corrected modularity
Innov	vation	Roadmap												
Software Innovatio		IBM Quantum Experience 	Qiskit Circuit and operator API with compilation	Application modules	Qiskit 😪 Runtime	Serverless Demonstrate concepts of	AI enhanced 🥝 quantum	Resource 🕲 management	Scalable circuit knitting	Error correction decoder				
			to multiple targets	Modules for domain specific application and algorithm workflows	Performance and abstract through Primitives	quantum centric- supercomputing	Prototype demonstrations of AI enhanced circuit transpilation	System partitioning to enable parallel execution	Circuit partitioning with classical reconstruction at HPC scale	Demonstration of a quantum system with real-time error correction decoder				
Hardware Innovatio		Early 📀 Canary Penguin	Falcon 📀	Hummingbird < Demonstrate scaling	Eagle 🔗	Osprey <pre> Osprey Enabling scaling with </pre>	Condor 🔗 Single system scaling	Flamingo 🕹	Kookaburra Demonstrate scaling	Demonstrate path to	Cockatoo Demonstrate path to	Starling Demonstrate path to		
		5 qubits 20 qubits Albatross Prototype 16 qubits 53 qubits	with I/O routing with Bump bonds	with multiplexing readout	with MLW and TSV	high density signal delivery	and fridge capacity	with modular connectors	with nonlocal c-coupler	improved quality with logical memory	improved quality with logical communication	improved quality with logical gates		
S Exec	cuted by IBM						Heron <	Crossbill う m- coupler						
کی On ta	-							in the second se						
- IBM Q)uantum /	© 2023 IBM Corp	oration											

IBM **Quantum** 3+

033, quantumpercomputers de 1000's of bits unlocking wer of computing

(1B)